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This memorandum presents a restricted solution of
the optimum thrust orientatlon program for a rocket in a drag-
free, three-dimensional central force field. The solution
is analytically obtained using the theory of optimal control.
The restriction on the applicability of the solution is that
the maximum distance between any two points on the flight
path must be small when compared wlth the distance from the
center of the force field. This restriction exists because
of the utilization of a perturbation technique which is intro-
duced in order to make the equations integrable. Since most
space trajectories being considered currently consist of long
coasting arcs and short powered flight arcs, this restricted
solution has numerous applications in physical problems.
Powered lunar descent trajectories and transfers between
trajectories are typical problems in which the solution may
be used.

1.0 INTRODUCTION

The general, unrestricted solution of this problem
has not yet been obtained. Only a few of the integrals of
the Euler-Lagrange differential equations for the problem

are known[ll. The optimum thr' st program for a rocket in a
two dimensional uniform force ield was first obtained using

£2]

the calculus of variations by Lawden in 1957 . A summary
and some additional results can be found in Reference [3].
Leitmann later treated the problem again using the theory of

optimal control[u’5]. The second section of this memo pre-~
sents a brief summary of Pontrragin's theory of optimal

controltu’SJ. Using the theory, the optimal solution for a
rocket in a three-dimensional uniform force field is obtailned
in Section 3. The problem in a central force fileld is for-
mulated in Section 4. It is then shown that under the restric-
tion described above, the system can be considered as a
neighboring system of the uniform force field problem. A
perturbation technique is used to simplify the differentilal
equations based on the already integrated uniform force field
system as the parent system. The perturbed system is inte-
grated and these integrals are comblined with the integrals
for the parent system to furaish the restricted solution to
the central fo-ce field prob.em.
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Two things concerning the solution should be noted.
First, the solution obtained from Pontryagin's Maximum
Principle has only satisfied some necessity tests for being
an optimum; its optimality is not guaranteed. Some theorems
on the exlstence of cptimal controls for linear systems have
been established [4], but they do not apply toc the problem
being considered. Second, 1f the solution to the parent system

-was in fact an optimal solution, the optimum may no longer

exist 1iIn the perturbed system. However, if it does exist, then
the solution to the perturbed system is a good representation
of the optimal solution. Without the sufficlency test and the
exlistence proof, one can only rely on numerical comparison to
determine the validlity of the solution for each individual
problem,

A numerical targeting scheme is being developed to
evaluate the integration constants for given boundary condi-
tions. A discussion of the scheme 1s given 1n the last sec-~
tion. Details of the numerical method and illustrative appli-
cations are not included in this memorandum. It 1s intended
to apply the solution to obtain a fuel optimum thrust orienta-
tion program for the powered descent phase of the lunar landing
mission.

2.0 OPTIMAL CONTROL FOR A DYNAMICAL SYSTEM

The problem of finding an optimal control for a
dynamical system 1is briefly described and formulated in this
section.

2.1 The State and the Control

Consider a dynamical system characterized by a set

of n variables Xys Yoy cees X These variables are functions

of time of class 02, and they define the state of the system at
any instant of time. If a vector in an n-~-dimensional Euclid-

ean space E” is defined as
X = (xl, cees xn),

the state of the system at any Instant of time may ve represented by
a point 1n the space which will be referred to as the state space.
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- The behavior of the system is governed by a set
: of differential equations called the state equations given

by
X, = fi(xl’ cees Xps Ugs ees um)*

i=1,2, ..., n

where Ugs u2, +ees U, are co 0l variables. The vector
a e (ul, Ugs ves um), which lies in an m-dimensional Euclid-

ean space Em, will be called the control. A control is admissable
if it satisfies the two properties

i) 4 = u(t) is a plecewise continuous function in some
finite interval te[t°, tf].

11) U e U ¥ te[t°, tT] and UcE™ is a prescribed, bounded
set.

The functions fi are assumed to be continuous in all arguments,
of

533 exist and are continuous for i,j=1,2,...,n.

2.2 The Cost Variable

The cost to transfer the system from a state i(tl)
to another state i(tz) is given by the integral

t
f fo(X,U)dt, UeU and te[t°, t
tO

£

.

¥Time may appear explicitly in the equation as a state
variable.
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Note that the cost 1s dependent on the path of the transfer

and the path is dependent on the control u. Introducing a
cost variable x, defined by

t
Xo(t) = f £fo(X(1), u(t))dr,
to

one has

Xo = fo(x, u)

and
Xo(t°) = 0.

Let the state space E? be augmented to En+l by including the
cost variable x,. A point in the augmented state space is
then given by

+
X = (Xo, Xis +res xn).

This vector in En+1 will be referred as the state of the system.
The state equations can now be written 1n the vector form

;‘E = F(X, 1) (1)
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where T = (fo, fl’ seey fn) is also a vector in En+l. Equation

(1) is assumed to have a unique solution for every given initial
condition X(t°) = X° with a given control u(t). Note that x,
does not appear explicitly in .

2.3 The Initial and The Terminal Manifolds

The state of the system 1s prescribed at t = t° and

r, t° by some end conditions

t=t

wr(i('(t°)) 0, r=l, ..., p < n

(2)

Wkt =0,  s=1, ..., qcn,

in which tf - t° is not specified and the cost variable x,

does not appear explicitly. The equations wr(;(t°)) = 0 define
an (n-p)-dimensional manifold, called the initial manifold,

in the state space E'. The equations Wy = 0 define an
(n-q)~-dimensional manifold, called the terminal manifold, in the
E". Since xo(t°) = 0, the initial manifold is unchanged when

E" is augmented to En+l. On the other hand, since xo(tf) is not
restricted by the end conditions, the terminai manifold becomes
(n+1-q)-dimensional in E™*1. Note that if p=q=n, the initial
and the terminal manifolds each reduce to a single polnt in

the state space o

2.4 The Optimal Control and the Pontryagin's Maximum Principle

A trajectory of the system is a solution curve of

equation (1) in E"*1 whose projection in E" initiates in the
initial manifold and terminates in the terminal manifold (see
Figure 1).
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An optimal control u*(t), t°ititf, 1s a control U ¢ U
whose resulting trajectory minimizes the total cost xo(tf). The

minimum value of the cost xo(tf) is unique but the optimal
control and the corresponding optimal trajectory may not be
unique. In other words, there may exlist more than one control
within U that results in different trajectorles with the same
minimum cost.

A neccessary condition for a control U e U to be
optimal 1s given by a maximum principle established by Pont-
ryagin. The maximum principle can also be used to find the
optimal control (or controls) if it exists. Before stating
the principle, some additional terms must be introduced. An

adjoint variable X{t) = (%o, Ais --+5 A ) is a vector in ™ ana
its components satlsfy the adjoint equations

n

of, (X, 1)

= i "7 =

_— E Ty Ay 3=0,1. ..., n. (3)
i=o

A function H{ 1s formed by taking the scalar product of X and T
H(X, X, 4) = X.F. (4)

Using the function H, the state equation (1) and the adjoint
equation (3) can be rewritten as

) (5)
L H(X,%,0 3=0,1,..., n.

For the problem given above, Pontryagin's Maximum
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Principle states that if ﬁ*(t), t® <t < tf,is an optimal con-

trol, which results in an optimal trajectory x*(t), then there

exists a nonzero continuous function f(t), satisfying the ad-
Joint equatlons, such that

N
1) gup  HE(e), X¥(e), ) = HE(L), X¥(t),Tu(t));
ueU
11) H|X(t), X*(t), U*(t)| =0, P:Z?tili
{
5 111) ro(t) = constant < O,

iv) The projection of (t) in the state space E” 1s normal
to the initial manifold at t=t° and is normal to the

terminal manifold at t=tf.

2.5 The Transversality Condition

Condition (iv) of the principle is also called the
transversality condition. Let n° be a vector in EV tangent
to the initial manifold at x*(t°). &° = (n$, ... n°)
must satisfy

T R AL v AT ety

st

n -»
3, (x) o a0
P ! (6.1)
X=X*(£°) rel, ..., p

With equation (6.1), p of the n components of ne may be expressed
in linear combinations of the remaining (n-p) components, which
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are arbitrary. The condition that K(t) must be normal to the
initial manifold can now be expressed by

X(t°) « n° = O, (6.2)

Since (n-p) of the n components in n° are arbitrary, the
coefficients of these arbitrary components in (6.2) must vanish,

yielding (n-p)_conditions on ¥ and % at t=t°. Similarly, (n-q)
conditions are given at the terminal manifold by

IW_(x)
d=1 J s=1, ..., Q
*=32(¢D)
and
ety 3 =0, (7.2)

Finding the optimal control u* and optimal trajectory

X* involves Z.tegrating the (n+l) state equations .and the (n+l)
adjoint equations. Excluding io(t°) and xo(t°), a total of
2n integration constants arise from the integrals. These con-
stants are evaluated using the (p+q) end conditions and the

(2n-p-q) transversality conditions. Ai,(t°) ] A8 is unrestrict~
ed and x0(t°) = x3 & 0 by definition.

2.6 The Bang-Bang Control

If some of the components of the control u appear
linearly in the state equations, that is, if
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£ = (X, AT + (X,
where
ur = (ul, Ugs e uv),

+n
u-o= (uv+l’ Uysasr 00 um)’

f' 1s a vector function nonlinear in ﬁn,and F 1s a (n+l)x(m-r)
matrix, then the function H assumes the form

H(X,A,0) = R-Fur + X8 (8)

The first term of H written in component form is

v
+0 <
T-Fu = l_ akuk

k=]l
where
n
o = Z AyF e K=1,2, veey Ve
J=o
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%é. If each contr.l which appears linearly is constrained by
uﬁin S < uﬁax k=1,2, ..., V

then the condition that #H (T, 1*, U*) is the supremum of
H (X, X%, Q) ¥ 2 € U implies

min

Uy

uﬁ(t) if ok(t) < o

max
Uk

uﬁ(t) if ok(t) > 0

Ik is called the switching function for the kth control u s

whenever Ok(t) changes sign, uﬁ switches from uﬂin to the u
or conversely. If ok(t) is continuous and it crosses zero
only a finite number of times in [t°,tf], then its corresponding
control variable u, is called a bang-bang control [U4], or

max
k

simply, u, is bang-bang. A bang-bang control takes on only
its limiting values through the entire time interval [t°,tf].

2.7 Non-integral cost variable

The cost of transfer in some dynamical systems is

co C
R VEE Mﬂi%mwu,:wmmw;wm; S RO TS e et s g, R

given by

cost £o(X,0)dat + aex(el))y. (9)
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It contains a non-integral term G in addition to the integral.
In order to apply the maximum principle, one may convert the
co:uv into an integral form by introducing two new variables

X041 and Uil given by

G(X)

>
]

n+l

Me

m+l  “n+l°

Consequently, the cost becomes

ef

cost =_I (fo + um+l)dt.
to

The maximum principle can then be applied. It was shown [4]
that the new variables X 41 and U+l do not enter in either

the # function or the transversality conditions; therefore,
conditions 1), ii) and iii) in the principle can be directly
applied disregarding the new variables. The new adjoint vari-
able An+1 corresponding to X 41 wWas shown to satisfy

A = -A, = constant < o.

n+l

Hence,)tm_1 can also be disregarded. The only necessary modi-

fication caused by increasing the dimension of the state space

is in the terminal transversality condition. When condition (iv)

of the maximum principle is applied to the new system, one gets
instead of (7.1) and (7.2) the following

IR o SRR "0 At
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n ->
aws(x) £
ax'j nj
=1 =0, S=1, ..., Q (10.1)
x=x*(tT)
n > n
Ao y gg(x) n§ + Z Ajn§ = 0 (10.2)
j=1 j=1

In summary, systems having nonintegral cost variables
given by (9) can be treated the same as systems having integral
cost variables except that (10.1) and (10.2) are used in place
of (7.1) and (7.2).

3.0 ROCKET IN A UNIFORM FORCE FIELD

The optimal control for a rocket in a drag-free two-
dimensional uniform force field has been found [5]. The solu-
tion of the same problem in a three-dimensional uniform force
field is obtained here. The solution is then used as the
btasis of perturbation from which the restricted solution for
a rocket in a central force flela will be found.

3.1 State Equations

A rocket is placed in a uniform force field. Let
X, ¥, and z denote the components of the position vector of
the rocket with reference to an inertially fixed rectangular
coordinate frame. The frame is chosen such that the field
force is in the negative y-direction (Figure 2). The gravi-
tational force applied to the rccketv is denoted by mg where

m is the mass of the rocket and g 1s a constant. Let 8

denote the fuel mass flow rate of the propulsion system and
¢ denote the effective exhaust velocity. The magnitude of

=S
the thrust vector T is given by

|| = cs8.
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The directicn of the thrust vector is characterized by the
two angles ¢ and ¢ ; ¢ is the angle between T and the xy-plane

and ¢ is the angle between the x-~axis and the projection of B
in the xy-plane (Figure 2). Defining u, v and w to be the
components «f the velocity vector in the same reference frame,
one can write the equations of motion in the following form

X -u=0,

y-v=0,

z -w=0,

U - (cgcos & cos ¢)/m = 0,

v+g - (cgcos e sin ¢)/m = 0,
w - (cg sin 8)/m = 0.

The total mass moving with the rocket decreases as fuel is
expelled through the exhaust. The relationship between the
mass and th~ fuel flow rate is given by the differential equa-
tion

The state o the system 1s defined by the seven variables
X) = X, X5 =Y, x3 = Z, X) = U, x5 =V, Xg =W and x7 =m,

For generality, let the cost to transfer the system from t°
to t be of the form of equation (9), i.e.,

%o (t) + G(X(t))

cost

L
£o(X(t), A(t))dt + G(X(t))
to

s

v
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The augmented state space 1ls an E8 containing vectors x = (x,,
Xy seves x7). If the cost 1s defined as the total fuel con-

sumption, then one has

fo = 0, Xo

i1l
o

and
G(X(t))= X7 (£°) - x(%).

Since xo, = 0, there 1is no need to bring A, into the adjoint
equations (although A, will appear in the transversality condi-
tion). The fuel flow rate and the two steering angles are the
control variables of the system; however, it is more convenient
to introduce the following alternative definition. Let

-5
u = (ul, Ugs Ugs uu) be given by

u, = B,

u, = cos & cos ¢,
u3 = ¢cos 0 sin ¢,
uy = sin o,

with the constraints

luzl’ lu3ls luul <1,

and

NN — e — |
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the unit vector (uz, uss uu) represents the direction of the

thrust. Another constraint 1s introduced by assuming that
the fuel flow rate Uy is throttlable between an upper limit

max min

u;"" and a lower limit u,™" > 0, i.e.,:

m
< u < u < u
R R ]

These two constraints define the admissable set U ¢ Eu for

the control U. With the definition of X and i, the state
equations become

il = Xy, (11.1)
Xy = Xg, (11.2)
).(3 = X6, (11.3)
s _ ¢ 11.4
Xy = X7 Uy Yo, ( )
- ¢ (11.5)
X5 = i; ul u3 - Bo,
X, =Sy, u

6 Xg 1 4> (11.6)

and

i7 = -u,. (11.7)

3.2 End Conditions

Let the position and velocity of the rocket be given

at t = t° = 0 and at t = t¥ > 0. Let the mass of the rocket be
given at t = 0. These are represented by the following equations

e Khrimns b
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x;(0) = x(0) = x°, (12.1)
x,(0) = y{0) =y°, (12.2)
x5(0) = 2(0) = 2°, (12.3)
xy(0) = u(0) = u®s (12.al
x5(0) = v(0) = v°, (12.5)
xg(0) = w(0) = w°, (12.6)
x7(0) = m(0) = m°, (12.7)
xl(tf) = x(¢T) = T, (12.8)
x,(65) = ysb) = 5T, (12.9)
xy(tF) = 2(¢) = 2F, (12.10)
x, (t7) = ue®) = o, (12.11)
';i x5(t7) = v(eT) = T, (12.12)
xg(tT) = wish) = W, (12.13)

Equations (12.1) to (12.7) define a fixed point in the state spaces
equations (12.8) to (12.13) define a one-dimensional terminal

H T e .
A L
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manifold. Consequently, the initlal transversality condition,
given (6.1) and (6.2), will be trivially satisfied.

Because the cost variable 1s a non-integral ty%e, the

terminal transversality condition is given by Equations (10.1)
and (10.2). Substituting the end conditions (12.8) to (12.13)

into (10.1) yields
=O 1=1,2,.o., 60

Consequently, the tangent vector at the terminal manifold is
given by

s (o, vers 0, n§>.

The terminal transversality condition (10.2) then becomes

b
(Ao + A7)n7 =0.

t=tf

Since ng is arbitrary, one has

x7(tf) = - Aoe (12.14)

The maximum principle stated that Ao < ©03 hence (12.14) does
not fix the value of A7(tf). In general, both A, = o0 and
Ao = ~1 < o0 should be tested.
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3.3 The #H Function and the Adjoint Equation

To find the optimal control d* ¢ U for the system,

the adjoint vector X = (Ao, Ais ooy An) is introduced. The
components of the adjoint vector satisfy the adjoint equations

given by (3) which become

A o= 0,
A, =0,
A3 =0,
)\u=-)\1’
A5=-)\2’
A6=-A3,
cu
X, = —=(hy Uy + Ag g+ Ag uy)
7= 2y Ut As Uzt Ag Uy
7

Forming X « ¥ yields the H function
> > >
H(X,2, 1) = Ay Xy * A, Xg + A3

e
+ [;;(Auua + 15u3 +

Recall that u, satisfies u?in LU < uTax

N —— e |

(13.1)
(13.2)
(13.3)
(13.4)

(13.5)
(13.6)

(13.7)

x6" AS Zo

A6“,4) -A7]ul (14)

and 1t 1s seen to

bt
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appear linearly in H{ ; hence, uy is bang-bang provided that
its switching function

6, = %; (Au u, + Ag Ug + 2 uu) = Aq (15)

vanishes only a finite number of times in [t°,tf].

3.4 1Integrals of the System

The integrals of equations (12.1) through (12.€) are
easily obtained

Ay = Cqps (16.1)
Ay = Cy, (16.2)
A3 = C3, (16.3)
My = Cy=Cits (16.4)
g = Cg5 = Gt (16.5)
rg = Cg - Cst, (16.6)

where the Ci's are the integration constants. In view of the
continuity req:irement on K, C1 to 06 remain unchanged in [t°,tf]
despite the possible discontinuities in Uy caused by switchings.
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In equation (14), the term (Ay uy =+ AS ug + Mg uu)
i represents the scalar product of the vector (Au, Ags *6) and

cu
the unit vector (ua, u3, uu). Since —;l is a non-negative
7
quantity, the product
cu,

attains its maximum when the unit vector (uz, Ugs uu) is
co-directional with (Au, Ags A6). Consequently, this becomes

a necessary condition for H{ to be the supremum &s was required
in the maximwun principle. The co-directional requirement implles
that

Uy = Ay / A, (16.7)
Uy = g / A, (16.8)
uy = Ag / A (16.9)

on e C————ne = b

where X = \/:3 + Ag + Aé > 0 1s the magnitude of (Au, Ags *6)'

Converting the control variables back to the steering angles,
one has

CS - Czt
tan ¢ = u3/u2 = AS/Au = Eu—-:—e;ﬁ'

J—_—
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and
/'—_— o o
tan 6 = uu/\'ug + ug o "\6/"/"12& + Ag
Cg = Cst

= '\/{Eu-clt)z + (Cs'Czt)z

Two things should be noted at this point. First, the direc-
tion controls ¢(t) and 6(t) are obtained indenendently f.om

the burning rate Uy . Second, if 6z0 (a planar problem),
the result reduces to the bi-linesar tangent steering law obtaln-~
ed by Lawden [2].

Some general remarks may be nade about the steeriang
angles. The adjoint variables Ags AS’ and A6 are linear func-
tions of time; each may vanish at most once in the interval

[t°,tf]. The angles 6 ani § defined by these adjoint varia-
bles are continuous functions of timz except for the two special
cases:

1) ay(e)) = ag(ty) = 0 for some tle[t°,tf]

11) Au(tl) = As(tl) = As(tl) = 0 for some tle[t°,tf3

For the first case, ¢ will have a !, of » radlians at t-tl.
For the second case, A(tl) = 0 and both ¢ and ¢ will cach have
a jump of =« radians at t-tl.

As has been showa previously, Uy is bang-bang if

L N TN SN
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the switching function 94 vanishes only a finite number of
times. To study the behavior of 99> the obtained integrals

are used to rewrite equation (15 ) as

= &2 _

Differentiating o, once and using equations (11.7) and (13.7),

one has
o, (t) = I; - X (% "t
where
_ 2 2 2
and

E = clcu + 0205 + C306.

In this equation, ¢ i1s a positive constant and neither x,
(the mass of the rocket) nor A(t) change their signs in
[t°,tf]. Hence, thgee possibilities exist concerning the

behavior of oy and 94

.

5 it

SRRV S TIRL

T e

Y . e

[op e



IR T RPN

[

Bellcomm, Inc. - 23 -

1) 615 o and %0 for all te[t°,t"], mnig arises when
- - (o] =
C, =¢C,= C3 = 0 and al(t ) = 0. The H function
reduces to H = -xsg.

The condition H{ =0 for cptimality implies l5=0. Consequently,

the steering angles reduce to

1l
o

tan ¢

and

tan 6 Cs/Cu = Constant

which represent a constant horizontal direction. Because of
the conditions imposed on the integration constants, this solu-

tion cannot satisfy the prescribed end conditions in general.

11) 0,20 and o f}

1 1=Constant#0 for all t e[t°, ¢

This case also requires Cl=Cz=C3=0‘ The correspond-
ing H function becomes

H = 0,U;-Ag80=0.
Consequently

g, = ngo/ul.
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If ¢,>0, one has ul=u?éx for te[t°,ff]. If 0,<0, one
has ulsuTin for te[t°,tf]. Either case results in
tan ¢ = CS/CH = Constant
and
tan 6 = 06/‘\éﬁ + C§~= constant.

This solution 1s again unacceptable in the general
case for the same reason given in 1).

A70 and o, (t)#0 in [to,f7.

This is the general form of the switching function.
The numerator of 81,(At-E), is a linear function of

time; it may vanish at most once and this can occur
only when E>0. When (At-E) = 0, one of the follow-
ing is true

a) 01=A=0, A#0

This implies that 9y has an extremum, At
this point

cA 0

°l(t) = x7A >

—_— -———w.—ﬂ"ﬂ ! — ' o "." Lo ‘v .

T v b A

o
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hence the extremum is a minimum. Furthermore, since
51 does not vanlish elsewhere, 0y is monotonic on both

sides of the extremum thus making the minimum a glob-
al minimum.

This implies that 61 has a jump from a negative value
to a positive value resulting in a cusp in the shape of
Gl. Again, since 81 does not vanish elsewhere, the
cusp 1s a global minimum.

In conclusion, the fuel rate controlvul is bang-bang,

1ts switching function o, is either a strictly monotonic func~

tion or a function that is strictly monotonic on both sides of
. a global minimum. The resulting switching sequence is one of
: the following:

max — min — max

max -— min
min -~ max
max -
min -~ .

Since Uy is a plecewise constant function, its switching from
one value to another does not affect the form of the integrated

results.

e en e, ! had *
L O TS

In the subsequent manipulations,

u, = Constant (= u?ax or u?in) (16.10)
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will be used to obtain the remaining integrals of the system.

The integrals so obtained are valid everywhere in [t°,tf] but
the integration constants will generally change their values
at a switching point to maintain the continulty of the solu-

tion.
Integrating equation (11.7), one has

Xq = Cp = upt. (16.11)
Letting
t = %I (c, - x7)
and
1

equation (13.7) becomes

g

e

R U
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in which

(ci+cg+c§)>0

=
]

o
[ ]

2[Cl(Cuu1 - 0107) + CZ(CSul - C207) + C3(C6u1 -C3C7)]
2 2 2
D = [(Cuu1 - 0107) + (C5ul - 0207) + (06u1 - C3C7) 1> 0.

Defining

2 _ 4,
Q = 4AD-BS =} ;[(Cuul - clc7) C, + (05ul

~

2
0207)03]

+ [(Cyus = C.C.) C., + (Ceus - C.C.)C-12
4% 177 3 6°1 37771

2\
+ [(Cguy - 0207) Cy + (Cyuy - C1C,)C,] ;o 0,

-

the integral of the above differential equation is

N T T — — ‘““‘wwwWWWWuwww»‘M
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Vax2
Ax,+Bx.,+D 2AXx.,+B

1 Xq Yo

+ CB' (16.12)

Since x, = C7 - ult is now a known function of time, the inte-
gral(16.12) 1is well defined.

The integrals of equations (11.4), (11.5) and (11.6)
are obtained similarly as

Xy = -c[(Cyuq - C107) S, (x7) + 0y Sz(x7)] + C9, (16.13)
Xg = -c[(CSu1 - C207) S; (x7)+ C, 82(x7)] + Cqq (16.14)
- Bot + ClO’

and

Xg = -c[(C6u1 - C3C7) Sl (x7) + C3 Sz(x7)] + C11 (16.15)
in which

Bx, + 2D
-1 -1 %%
S,(x,) = = sinh  ———
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-1 2Ax7 + B

sinh T——— .
Q

82(x7) =

S

The integrals of equations (11.7) to (11.9) all
involve the integrals of Sl and SZ’ which are obtained below.

; 1 -1/B , 2D
| S,(xq) dt = —= |(sinh “[= + dt.
J 17 ND j (Q x7 QQ}

Letting
2D _
= 8,
x,VQ
7
one has
-dx
at = —71 = =28

Ly

and the above integral is carried out by parts
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fsldt - g—‘/—-ﬁ-;f[sinh'l( B . s)]d(-l—)
u, V@ Ve 8

= il/\/g‘ z sinh'l(S—E+ e)-jr% d[sinh-l% + s):! :

The integral part of the last expression can be computed he

J/- _ ds - J/- ds _
S-\l+(\BI—GT+s)2 S\/Sz+5—%s+(l+2)

. | B2\, B
1 1 ﬁl + 6—)+ ;T'S

T - — sinh- .
S
V1+82/9 L

i Substituting Xq back into the results, one has the integral

Xq 1
Sl(x7)dt = - GI Sl(x7) +z -Sz(x7).

i

The integral of S, 1s obtained similarly, with the result

1 B 1 2
sz(x7)dt £ - q (x7 + ﬁ) 82(x7) + EF-\/AX.’ + Bx7 + D .

P

e am
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P Using the above results, equatlons (11.7) to (11.9)
are integrated as

B
= & (Cyuy = C107)(x8y = 8p) + Cy(xq + 37)5;

X
1w

c —
2 L[]
- -K];_\/Ax.z + Bx7 +D + 09t + Cyps (16.16)

B
x2 = %I (C5u1 - 0207)(x7sl - Sz) + Cz(x7 + ix)sa

C ~ 2
2 t
- K?_ —z/ix,] + Bx7 + D - E—%— + Clot + 013 (16.17)
and

B
x3 = % (C6u1 - C3C7>(x7sl - 82) = C3(x7 + EK)SZ

1
C3 , 2m_______*_
- 2 —\‘/p_;;,? +Bxy + D +Cpyt + Cyy (16.18)

Equations (16.1) to(16.8) give the solutions for the state

variable §, the adjoint varilable X and the control 4. A
total of fourteen integration constants have been introduced
in the solutions. These constants and the total transfer time

(tf-t°) are the fifteen unknown constants to be evaluated in
the integrals. The end conditions and the terminal transversal-
ity condition given by equations (12.1) to (12.14) provide

WL AP TG e oW
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fourteen relationships. In equation (12.14), since no evident
reason was found to reject either Ao = 0 or A, = -1, both cases
are to be considered. The condition H = 0 glves the fifteenth
relationship, which now reduces to

Because of the swiltching property of Uy these fifteen

relationships cannot be solved algebraically to determine

the fifteen unknown constants. The first six constants have been
shown to remain unchanged at a switching point. The remaining
constants (C7 to C;,) will, in general, change thelr values at

a switching point. The continuity of X and A7 at the switching

points are to be used to determine the changes. The switching
times, 1f they exist, are given by cl(t) = 0. In view of the lengthy

form of the integrals and the difficulties in evaluating these
constants, a numerical scheme would be more desirable when
dealing with a specific problem.

4,0 A ROCKET IN A CENTRAL FORCE FIELD

i

The problem of a rocket in a drag-free central force
field 1s encountered repeatedly in the design of space trajec-
tories. Since the general optimum fuel solution for this prob-
lem has not been completely integrated, a restricted solution
is presented here in closed form. If the set of state equa-
tions for a rocket in a central force field is compared with
the set for a rocket in a uniform force field, one sees that
the differences between them become very small if the maxi-
mum position change of the rocket during the flight remains
small when compared to the distance from the center of the
central force fleld. This suggests that under such circumstances
the system with a central force fleld can be consldered as
a perturbed system of a parent system having a uniform force
field. When the solution to the parent system is known, the
differential equations for the perturbed system may be simpli-
fied which sometimes makes them 1lntegrable, a= in this case.
The solution so obtained is restricted to powered {lights
having small position changes as described above.

NN =i = o — 1
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4,1 The State Equations

Consider a rocket placed in a central force field
(Figure 3). The center of the force field is located at 0.
An inertial reference frame is chosen with 1its origin located
on the surface of the central force body of radius Ro. The

y-axis points along the radlius that passes through the origin,
the x and z-axes are tangent to the surface. If the same
assumptions are made about the rocket as those in Section 3.1,
the equations of motion for this system are

e
!
c
n
o
-

y-v=0,
z -w=0,
R 2
u - go(ﬁiﬁ;) sin ¢ sinp - (cB cos 3 cos ¢)/m = 0,
2

vV -g (ﬁirﬁ) cos 1 - (c8 cos 6 sin ¢)/m = 0,

2
R
W - go(§§73? sin ¢ cos p - (cB san e)/m = 0

in which h 1s the altitude, 8o is the gravitational constant

at the surface of the central force body, v 1s tne central
angle measured from the y-axis to the rocket and p 1s the angle
between the xy-plane and the plane containing the y-axis and
the rocket. Defining

bt S s A AR S ¢ e T Ty it 1 e
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£ = 1/Ro

and introducing the new variables

>~
]

A cos p

[
[

A sir p,

the above equations are expanded in a power series of e. When
terms involving second or higher powers of ¢ are omitted from
these equations, one obtains the following:

b
+
[y)
o)
o3
+
3
e
~
I
[
]
o
-

N
+
™

~~

DN

o3
+
(]

oy

~
i
=

=O,
u-~¢(cg cos 6 cos ¢ )/m +¢ gOX = 0,
vV +og -e(cg cos 6§ sin ¢)/m - 2£g0h = 0,

w - (c8 sin 6)/m +¢ goZ = 0.

f S S
{
|
i

—
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If assumptions concerning the burning rate are made similar
to thouse in Section 3.1, the mass flow rate equation remains
unchanged

Defining ¥y, = X, Yy, = h, y3 = Z, Yy = U y5 =V, yg =W and
and yg = m, one may denote the state of the system by §eE7.

More than one derivative appears in each of the first three
equations of motion. In order to convert these equations to
the forms

. -+

yi = fi(Y)’

the first three equations are solved simultaneously for i, h
and 7. The results, retaining only linear terms of ¢, are

5(=u+ehv,
h=v+e(Xu+ hv + Zw)
i=W—EZV-

The control of the system is denoted by v = (vl, Vas V3 Vh)’
in which ‘

o iRy

At B 6

BT 1 Bpbii s 4 e B LR




g 3P gt ey

e

and

- 36 -

vy = 8,

cos 6 cos ¢,

<
n
"

cos 6 sin ¢,

vy = sin 6.

The control must lie within the admissable set defined by

and

With these definitions, the state equations of the

2 2 2 _
v2 + v3 + vu = 1.

system becomes

'-.g;”' p—

perturbed

U et pome 1 o

PR

BB e bt o




Bellcomm, Inc. - 37 -

yl =yy - e(yly5 + yayll)
Ja = Vg + €(yyyy *+ ¥3¥g)s
V3 = y6 - E(y3y5 + y2¥6),
sy = Evyvs - eg yg,

) Y 1'3 0’1

g. = S~ ro =
Vg = ¥7 ViVy = 8y t 268.Y 5,
g =

6 y7 Vlv“ - Egoy3

and

y7 = —Vl.

(18.1)

(18.2)

(18.3)

(18.14)

(18.5)

(18.6)

(18.7)

It can easily be seen that when ¢+0, these equatlions approach

the state equations of the parent system given by (11.1)

to

(11.7). The soluticn for ¥ is therefore assumed to approach

the solution of X when ¢ 0,

4.2 The # Function and the Adjoint Equations

Denoting the adjoint variable of the system by
o = (ay, %ss enes a7), the H function reads

N A L bty SR ESBERR EYT bve Wl e e Wun Myt b

e Aamin Fepds et a5 ¥ 3@ a6
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H(Y, ¥, 4) = a-y

a ¥y * az¥g * azyg - agg,
ﬂ[;—;(auvz +agVy + agvy) - aplvy
—eloy(yyys + Ya9) - aply vy + y3ye)
+aglg¥s + Vo¥e) + ayegy,

- 2u5g0y2 + %g8qy 3] -
The adjoint equations are
&1 = E(a1y5 T ey + “ugo)’

2 = lag¥y * a3yg - 2058,),

Re
0

3 = el-ay¥s + agys + agg ),

%y = =%+ flagyy - ayyy),

Re
[]

5 ~0L2 + E(Glyl + u3y3)’

...q,3 + e(-a2y3 + a3y2)

. cv
1(ayu, + a u, + uy, ).
—= 4%2 543 a6y

(19)

(20.1)

(20.2)

(20.3)

(20.4)

(20.5)

(20.6)

(20.7)

S )
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These equations approach the adjoint equations of the
parent system when €+0,

4,3 Equations of First Variation

Let the functions bearing an asterisk denote the
solutions to the parent system. The solutions for the perturbed
system are assumed to be expandable into power series in ¢
aboute = 0, with the expansions converging to the parent solu-
tions when e€»0. When terms including second or higher orders
of ¢ are dropped, the assumed solutions for the perturbed system
have

yi = x¥ 4+ &, i=1, ..., T
ayp = M ek, 1=l L, T
and
* -
vy =ouy +oeuy, i=1, R

where the barred quantities are unknown functions of time.
Substituting these assumed solutions into equations (18.1)
to (18.7) and eliminating the parent state equations, as well
as terms of second or higher order in ¢, one has

T

o
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Similarly, the adjoint
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uk

2+ u ) + 2g x%,

Uy

uﬁ + uuu ) - g x3,

equations become

(21.

(21.

(21.

(21.

(21.

(21.

(21.

1)

2)

3)

)

5)

6)

7)




ol e e

Lﬁj«'w#ﬁﬁa&éﬂ.,n e e

>l

and

> e

- 2ud

- 41 -
Agxg - A8xf 4+ Ango,
xixﬁ + A%xg - nggo,

-Agxg + A§x§ + Aggo5

—_——c  — — ——
(x?)Z[ui(Auuz + #ﬁuz + X

* U ]
I + upn¥]

-\lﬂ\‘lx I

uk + AR

573 573

(22,1)

(22.2)

(22.3)

(22.4)

(22.5)

(22,6)

+ Isﬂﬁ + A%Eu)

(22.17)
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in which

= /0p? s apf e Gp2.

L.4 Integrals of the Perturbed System

The first six adjoint equations in (22) can be directly
integrated as

2
- C]_t -
Al = Clxg - ng{ + (Cut - =5 ) + Cy,\ (23.1)
- 02t2 -
A2 = Clxi + C3x§ + 2g°(C5t - ) + 02 ’ (23.2)
2
- * Cst -
)\3 = -sz3 + C3x5 + gO(C6t. - ) + C3, (23.3)
_ cyt? ¢y t3 ~
Xy = —go( >— - =3 ) + Clt + Cy, (23.4)
_ cgt® oy
Ag = -2g 65— - 3 ) + Tt + Ce, (23.5)

rh

e
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and

_ Cgt® C3
)‘6 = —go( 5 - 3 ) + C3t + C6 (23-6)

in which the Ei

grate the remalning equations, the control vV for the perturbed
system must be determined. The maximum principle 1s applied
to the H function, given by (19), to find the optimal control.
Knowling that v1>0, the supremacy of H implies that the vector

's are integration constants. In order to inte-

(v2, V3s vu) must be co-directional with the vector (°4’ g, u6),

i.e.,
ay
= e’
V2 a
[s ]
= 2
v3 =3
and
¢g
Yy = 3
in which

e sl

vt
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Substituting the assumed sclutions into these expressions
and eliminating terms involving higher orders of ¢ yields

32 = %,[Tq - Ag Ad, (23.7)
T. = 2. [Xz =2 4] (23.8)
Us = x®*"5 7" 5 7 .
and
1 -
Uu = v[)\s - Xg A] (23.9)
in which
v
, 1 _ _ _
A= (Afx, + A% + A% )).
G2 Bkt ABRs * ARk
:
i Note that the Ai's and Ti's appearing in the Ei's are all known
s functions of time. The control for the perturbed system may
be expressed in terms of the steerlng angles, which are
x X Iy
y
tan ¢ = %% [+ e()‘5 - 3 > s
%
P— e ﬂ""'—wv—'ﬁ e rer————— " mw T ‘w

-
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- —y xTE
r1+ E(As ) Al aEat

—2 ],
A A A :
NP2 + On? 5"+ 5

Note that when ¢+0, thec steering angles converge to the parent
solutions. The fuel rate control V, appears llnearly in the

H function. The switching function for v; 1s identical in
form to 9 of the parent system; hence, its behavior neigl .ors

that o o,. Consequently, A2 is bang-bang, and 1t has the same
switching sequence as uq except that the switching times are

slightly perturbed. Knowing that vj; 1s a plecewlse constant
function and 1t coincides with u, except near a switching time,

one can set Gl = 0 and integrate equations (21.4) to (21.7),

the right hand sides of which are now known functions of time.
These results may then be used to integrate the remaining equa-

tions. A total of fourteen integration constants, 51 to Elh’
will be introduced in the prozedure. necause of the lienzthy

form of the integrands, it is difficult to obtain these integrals

in closed form. However, they are all expressible in quadra-
tures and can be numerically evaluated quite easily.

4.5 End Condiiions and Transversality Conditions

The end conditions for the perturbed variables are
dependent on the choice of the coordinate system and the selec-
tion of the houndary conditions for the parent system. Let
the coordinate system be chosen as that shown in Figure 3,
with the y-axis containing the giver initial pcsition of the
rocket. Furthermore, let the initial and final position as
well as the velocity vectors be prescribed in the same coor-
dinates for both the parent system and the perturbed system.
The following end conditlons result:

ig = Ii(O) = 0, 1=l,..., 6, (24.1)

L)
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0 = x5 = ] S, (24.2)
i o= %00 = 1720 f)2+(f)27 4
Xl - X2 - 1 Xl X3 -3 (2 '3)
ig = x3(tf) = —xg xg, (24.4)
and
i—g = ii(tf) =0, i=4,5,6 (24.5)

If the initial mass of the rocket is assumed to be the same
as in the parent system, one has

x% = x7(0) = 0. (24.6)
Using *he cost function

> = o -
G(y (%)) y.,(t ) =y, (t),

the terminal transversality condition for the perturbed system
is

[P e
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in which ay, = Ao is equal to elther zero or minus one. Let
the total flight time for the perturbed system be assumed as

# —
tf = ¢f" 4+ ¢ EF
*
in which tf' is the flight time for the parent system. The
first order Taylor's expansion of the transversality condition
*
about tf is

Pt

* 1 ok R f o FR
A+ x7(t ) + e[x7(t ) tT o+ 17(t )]l = 0.

* ¥
Knowing that x7(t ) =

iy dee b e

AO yields

R TR

~f _ = % % ¥
T o= a8 )/ (27 ) (2b.7)

et et %

— * .* *
Both A7(tf ) and x7 (tf ) contain the integration constants
* —
and tf . The computed value for tf indicates the charge in
required burning time for the perturbed syciem.

Substituting the assumed solutions into equation
(19) and eliminating the parent H function, the condition
H = 0 reduces to
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* * ¥ ) . * *
xl(xu - XXy - 1 5 As (x + x, xu + x3x6)

*_
¥ —uox
* * c 17
+ A3(x6 - XyXg = x3x5) + ;!-(‘;t_‘ + )
7 v
*
Cu,  x_ * *
+ —-;—(Auu + 15 3 + A6u“) - Xug X + 2}\5g x
X
7

cu;, _ . _ s
+ (A yu, + Agug + Xguy) - AgB, = Aquy =0

X

7

Using the integrals (23.1) to (23.9) and evaluating the above
equation at t=0, one has

o =.,0 ., % ,C , 7 ,O
g ( Cyxq + 205x2 C6x3 - Cp.) + 1%y * szs + C3x6
C + C.C
- 7%ug + 2u%u * O5% * % 6]=o. (24.8)
x° 2 2 2
7 Cu + C5 + C6
e o e e BT SRR
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Equations (24.1) to (24.8) provide fifteen equations
to solve for the fourteen integration constants, 51 to 61“’

and the change in flight time T..

5.0 NUMERICAL METHOD

In the uniform force field problem, the determination
of the constants involves the solving of 15 coupled nonlinear
simultaneous equations. It is impractical to do it analytically.
With the assistance of computers, a numerical scheme is much more
appealing. If a numerical method is to be used, a different
approach may be taken to simplify the process. Instead of using
the analytical form of the solutions and solving for all the
constants, the equations of motion are integrated numerically
with the given initial condlitions. The integrated optimal con-
frol is used in the numerical integration and the unknown inte-
gration constants in the control are used as parameters which
are numerically varied to find the flight path that satisfies
the prescribed terminal position and velocity. This method
eliminates the process of solving a set of simultaneous equa-
tions. Note that the solutions are analytically obtained from
the control theory, i.e., only the determination of the inte-
gration constants involves numerical methods. This is the basic
difference between the numerlical method used here and other
methods of numerically minimizing the total fuel consumption.

After the constants in the parent solution have been
fourd, the constants in the perturbed system may be obtained
in a similar fashion.

6.0 SUMMARY

The fuel optimum solution of a rocket in a three-
dimensional uniform force field was formulated using the opti-
mal control theory, and then integrated analytically. This solu-
tion is a generalization of a known two-dimensional solution.
It was then shown that if the maximum position change is small,
the same problem in a central force {ield can be considered as
a neighboring system of the uniform force field system. A
perturbation technique was introduced to find the solution for
the central force field system using the uniform force field
problem as the parent system. The optimal control for the
perturbed system was integrated in closed form. Other differ-
ential equations were shown to be integrable in quadratures.
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Application of the solution to a specific problem
involves the evaluation of the integration constants for given
initial and terminal conditions. Because of the lengthy form
of these integrals, an analytical method 1s impractical. An
iterative scheme is currently belng developed to numerically
evaluate the constants in the integrals. The basic difference
between this method and other methods of numerically minimizing
the total fuel consumption 1s that the solutions are obtained
analytically from the control theory; only the determination
of integration constants involves numerical methods.
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FIGURE 1- TRAJECTORIES IN THE AUGMENTED STATE SPACE
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FIGURE 2 - A ROCKET IN A UNIFORM FORCE FIELD




FIGURE 3 - A ROCKET IN A CENTRAL FORCE FIELD




